Review of Methods for Mapping Forest Disturbance and Degradation from Optical Earth Observation Data

نویسندگان

  • Manuela Hirschmugl
  • Heinz Gallaun
  • Matthias Dees
  • Pawan Datta
  • Janik Deutscher
  • Nikos Koutsias
  • Mathias Schardt
چکیده

Purpose of review: This paper presents a review of the current state of the art in remote sensing based monitoring of forest disturbances and forest degradation from optical Earth Observation data. Part one comprises an overview of currently available optical remote sensing sensors, which can be used for forest disturbance and degradation mapping. Part two reviews the two main categories of existing approaches: classical image-to-image change detection and time series analysis. Recent findings: With the launch of the Sentinel-2a satellite and available Landsat imagery, time series analysis has become the most promising but also most demanding category of degradation mapping approaches. Four time series classification methods are distinguished. The methods are explained and their benefits and drawbacks are discussed. A separate chapter presents a number of recent forest degradation mapping studies for two different ecosystems: temperate forests with a geographical focus on Europe and tropical forests with a geographical focus on Africa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping Tropical Rainforest Canopy Disturbances in 3D by COSMO-SkyMed Spotlight InSAR-Stereo Data to Detect Areas of Forest Degradation

Assessment of forest degradation has been emphasized as an important issue for emission calculations, but remote sensing based detecting of forest degradation is still in an early phase of development. The use of optical imagery for degradation assessment in the tropics is limited due to frequent cloud cover. Recent studies based on radar data often focus on classification approaches of 2D back...

متن کامل

Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+

Forest degradation is a global phenomenon and while being an important indicator and precursor to further forest loss, carbon emissions due to degradation should also be accounted for in national reporting within the frame of UN REDD+. At regional to country scales, methods have been progressively developed to detect and map forest degradation, with these based on multi-resolution optical, synt...

متن کامل

Normalized algorithm for mapping and dating forest disturbances and regrowth for the United States

Forest disturbances such as harvesting, wildfire and insect infestation are critical ecosystem processes affecting the carbon cycle. Because carbon dynamics are related to time since disturbance, forest stand age that can be used as a surrogate for major clear-cut/fire disturbance information has recently been recognized as an important input to forest carbon cyclemodels for improving predictio...

متن کامل

Potential of Landsat-8 spectral indices to estimate forest biomass

Forest ecosystems are among the largest terrestrial carbon reservoirs on our planet earth thus playing a vital role in global carbon cycle. Presently, remote sensing techniques provide proper estimates of forest biomass and quantify carbon stocks. The present study has explored Landsat-8 sensor product and evaluated its application in biomass mapping and estimation. The specific objectives were...

متن کامل

VHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine

Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1701.02470  شماره 

صفحات  -

تاریخ انتشار 2017